

GNSS Timing Threats and Countermeasures

November 4, 2021

Samuli Pietila Philipp Richter Zdenek Chaloupka

Outline

Introduction

Overview of Threats

Potential Attackers

Jamming Countermeasures

Spoofing Countermeasures

Conclusions

GNSS as a part of critical infrastructure

- Several critical infrastructure sectors rely on accurate time/synchronization
 - Wireless communications
 - Power distribution
 - Data centers
 - Financial sector

Threat types and impacts

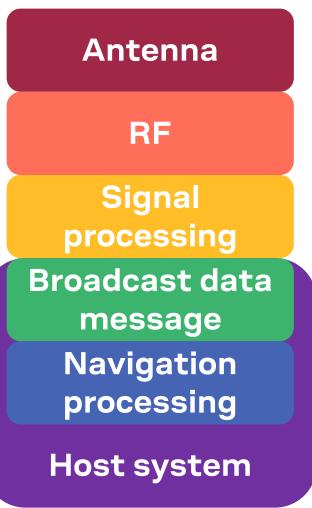
Threat type	Impact	
JammingUnintentional interferenceIntentional jamming	 CW jamming – ghost satellites, denial of service Wideband jamming – reduced SNR, reduced accuracy, loss of service 	
 Spoofing Meaconing (rebroadcasting) Broadcasting fake signals 	 Aim to make receiver provide false PVT Impact can vary from nothing to false PVT to no PVT 	
 GNSS system issues Dec 2020: Galileo ground system atomic clock failure Jan 2016: GPS UTC parameter error 	 Large PVT errors Service unavailability 	

Threat actors

Туре		Motivation	Capability
ĉ	Privacy Seekers Script Kiddies	PrivacyBoredom	• Low
<mark>ش</mark>	Hacktivists	 Political 	• Medium
с П	Researchers	Improve securitySelf-marketing	• High
n n n n n n n	Cybercriminals	 Financial 	• High
	Foreign state	 Damage foreign systems 	 Advanced

Jamming countermeasures

- Adaptive antenna systems, null steering antennas
- Out-of-band interference: Antenna and RF front-end filtering
- In-band jamming:
 - In-band jamming cannot be removed with fixed SAW filters without effecting also the GNSS signal → therefore more sophisticated methods must be used
 - In-band notch filter banks
 - Static/slow varying CW and narrowband jammers
 - Adaptive notch filters against fast chirp jammers
 - Signal blanking, effective against duty-cycled jammers
 - Multi-band receiver may switch to un-jammed band
- Monitor AGC, power levels, signal spectrum
- Recover after attack



Spoofing countermeasures

er processing chai Ceive S S S **GNS**

7

- Antenna arrays for angle-of-arrival detection
- Power level and spectrum checks
 - Changes over time, between GNSS and frequency bands
- Signal quality and consistency monitoring
 - Between GNSS systems and frequency bands
- Navigation data validity checks (eg DHS whitelist)
- Navigation data authentication (Galileo OS-NMA)
- Consistency of PVT solution
 - vs known boundaries and motion, vs clock characteristics
- Consistency vs other time sources
 - Atomic clock, network time
 - Other receivers using different GNSS system, frequency band, time base, antenna location

> Redundancy at all levels

Conclusion

- GNSS is an excellent source of time and synchronization, well worth protecting
 - Affordability free service, easy installation
 - Accuracy "atomic clock"-level without atomic clocks
 - Availability global coverage
- Effective countermeasures cover all stages from antenna to application
- Redundancy is key multi-GNSS, multi-band
- Threats exist, but also countermeasures evolve

It is an arms race – We'll keep on fighting!

Thank you for your attention